Most recent digital camera and imaging news items - RSS Digital camera and imaging news items - HTML
Bookmark and Share

Scientific discovery moves Racetrack Memory closer

IBM Research has been the first to measure the movement and processing of digital data as a magnetic pattern on nanowires 1,000x finer than a human hair. This memory could someday enable a single portable device to store all the movies produced worldwide in a given year and run on a single battery for weeks at a time. Now, researchers have revealed a previously unknown aspect of key physics inside Racetrack memory, which stands to improve memory capabilities within mobile phones, laptop computers and...

PRESS SUMMARY

Background on Racetrack Memory and other research projects at Almaden ResearchNew Kind of Memory Device Combines the Best of Flash Memory and Magnetic Storage

IBM Research is the first to measure the movement and processing of digital data as a magnetic pattern on nanowires 1,000 times finer than a human hair. New memory uses the spin of electrons to move data at hundreds of miles per hour to atomically precise positions along the nanowire racetrack. This memory could someday enable a single portable device to store all the movies produced worldwide in a given year(i) and run on a single battery for weeks at a time. IBM (NYSE: IBM) Researchers  today revealed a previously unknown aspect of key physics inside Racetrack memory -- a new technology design which stands to improve memory capabilities within mobile phones, laptop computers and business-class servers. This new class of memory could enable devices to store much more information - as much as a factor of 100 times greater - while using much less energy than today's designs.

The Racetrack memory project - which started in IBM's Research labs only six years ago - flips the current memory paradigm on its head. Instead of making computers seek out the data it needs – as is the case in traditional computing systems – IBM's Racetrack memory automatically moves data to where it can be used, sliding magnetic bits back and forth along nanowire "racetracks." This technique would allow electronic manufacturers to design a portable device capable of storing all the movies produced worldwide in a given year with room to spare.

Digital data is typically stored in magnetic hard disk drives, which are low-cost but slow due to their moving parts, or in solid state memory such as Flash memory, which are faster but more expensive.  Racetrack memory aims to combine the best attributes of these two types of devices by storing data as magnetic regions – also called domains – in racetracks just a few tens of nanometers wide.

The new understanding, revealed today in the journal Science, allows the precise control of the placement of these domains, which the IBM team has proven can act as nano-sized data keepers that can not only store at least 100 times more memory than today's techniques, but can be accessed at much greater speeds. By controlling electrical pulses in the device, the scientists can move these domain walls at speeds of hundreds of miles per hour and then stop them precisely at the position needed -- allowing massive amounts of stored information to be accessed in less than a billionth of a second.

The full scientific details of the discovery can be read in the scientific paper. In short, the IBM scientists were the first to measure the time and distance of domain wall acceleration and deceleration in response to electric current pulses, which is how digital information is moved and processed in Racetrack memory. This not only gives scientists an unprecedented understanding and control over the magnetic movements inside these devices but also advances IBM's Racetrack memory -- driving it closer to marketplace viability.

“We discovered that domain walls don't hit peak acceleration as soon as the current is turned on, and that it takes them exactly the same time and distance to hit peak acceleration as it does to decelerate and eventually come to a stop,” said Dr. Stuart Parkin, an IBM Fellow at IBM Research – Almaden. “This was previously undiscovered in part because it was not clear whether the domain walls actually had mass, and how the effects of acceleration and deceleration could exactly compensate one another. Now we know domain walls can be positioned precisely along the racetracks simply by varying the length of the current pulses even though the walls have mass”.

To achieve the densest and fastest possible memory, the domain walls inside the device must be moved at speeds of hundreds of miles per hour to atomically precise positions along the tracks. These timescales (tens of nanoseconds) and distances (micrometers) are surprisingly long, especially since previous experiments had shown no evidence for acceleration and deceleration for domain walls driven along smooth racetracks with current.

Additional information: Background on Racetrack Memory and other research projects at Almaden Research
December 24, 2010
go to top of page